Cortes, secciones y roturas

Introducción En ocasiones, debido a la complejidad de los detalles internos de una pieza, su representación se hace confusa, con gran número de aristas ocultas, y la limitación de no poder acotar sobre dichas aristas. La solución a este problema son los cortes y secciones, que estudiaremos en este tema. También en ocasiones, la gran longitud de determinadas piezas, dificultan su representación a escala en un plano, para resolver dicho problema se hará uso de las roturas, artificio que nos permitirá añadir claridad y ahorrar espacio. Las reglas a seguir para la representación de los cortes, secciones y roturas, se recogen en la norma UNE 1-032-82, “Dibujos técnicos: Principios generales de representación”, equivalente a la norma ISO 128-82. Generalidades sobre cortes y secciones Un corte es el artificio mediante el cual, en la representación de una pieza, eliminamos parte de la misma, con objeto de clarificar y hacer más sencilla su representación y acotación. En principio el mecanismo es muy sencillo. Adoptado uno o varios planos de corte, eliminaremos ficticiamente de la pieza, la parte más cercana al observador, como puede verse en las figuras. Como puede verse en las figuras siguientes, las aristas interiores afectadas por el corte, se representarán con el mismo espesor que las aristas vistas, y la superficie afectada por el corte, se representa con un rayado. A continuación en este tema, veremos como se representa la marcha del corte, las normas para el rayado del mismo, etc.. Se denomina sección a la intersección del plano de corte con la pieza (la superficie indicada de color rojo), como puede apreciarse cuando se representa una sección,...

Obtención de las vistas de un objeto

Generalidades Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo sobre 6 planos, dispuestos en forma de cubo. También se podría definir las vistas como, las proyecciones ortogonales de un objeto, según las distintas direcciones desde donde se mire. Las reglas a seguir para la representación de las vistas de un objeto, se recogen en la norma UNE 1-032-82, “Dibujos técnicos: Principios generales de representación”, equivalente a la norma ISO 128-82. Denominación de las vistas Si situamos un observador según las seis direcciones indicadas por las flechas, obtendríamos las seis vistas posibles de un objeto. Estas vistas reciben las siguientes denominaciones: Vista A: Vista de frente o alzado Vista B: Vista superior o planta Vista C: Vista derecha o lateral derecha Vista D: Vista izquierda o lateral izquierda Vista E: Vista inferior Vista F: Vista posterior Posiciones relativas de las vistas Para la disposición de las diferentes vistas sobre el papel, se pueden utilizar dos variantes de proyección ortogonal de la misma importancia: El método de proyección del primer diedro, también denominado Europeo (antiguamente, método E) El método de proyección del tercer diedro, también denominado Americano (antiguamente, método A) En ambos métodos, el objeto se supone dispuesto dentro de un cubo, sobre cuyas seis caras, se realizarán las correspondientes proyecciones ortogonales del mismo. La diferencia estriba en que, mientras en el sistema Europeo, el objeto se encuentra entre el observador y el plano de proyección, en el sistema Americano, es el plano de proyección el que se encuentra entre el observador y el objeto. El desarrollo del cubo de proyección, nos proporciona sobre un único...

Curvas cónicas – La Parábola

Definición La parábola es una curva abierta y plana, que se define como el lugar geométrico de los puntos del plano que equidistan de un punto denominado foco, y una recta denominada directriz, observando la figura, FP = PQ = r. El eje de la parábola es la recta perpendicular a la directriz, que pasa por el foco F. La distancia FD, del foco a la directriz, se denomina parámetro de la parábola, el punto medio del segmento FD, es el punto V, que se denomina vértice de la parábola. Propiedades y elementos La parábola se puede considerar como una elipse, uno de cuyos vértices se encuentra en el infinito, así como el centro de la curva. Partiendo de esta consideración, comprobaremos que las propiedades enunciadas para la elipse, se cumplen igualmente en la parábola. La circunferencia principal Cp, pasará por el vértice V de la curva, y dado que el centro de la curva se encuentra en el infinito, la circunferencia principal resulta ser la recta perpendicular al eje en el vértice V. La circunferencia principal, se define como el lugar geométrico de los pies de las perpendiculares(Q), trazadas desde los focos a las tangentes (t) de la parábola. También se puede definir como el punto medio de los segmentos que unen el foco, con la circunferencia focal del otro foco, y las mediatrices de dichos segmentos, son tangentes a la parábola. La única circunferencia focal Cf de la parábola, tendrá su centro en el infinito, y deberá pasar por el punto D, simétrico del foco respecto a la tangente el en vértice de la curva, resultando por...

Construcción de polígonos regulares dado el lado del convexo, del estrellado, o la distancia entre caras

Pentágono dado el lado del convexo (construcción exacta) Dividiendo el lado del pentágono en media y extrema razón, obtendremos la diagonal del pentágono buscado, solo restará construirlo por simple triangulación. Comenzaremos trazando la perpendicular en el extremo 2 del lado, con centro en 2 trazaremos un arco de radio 1-2, que nos determinará sobre la perpendicular anterior el punto A, y trazaremos la mediatriz del segmento A-2, que nos determinará su punto medio B. A continuación, con centro en B, trazaremos la circunferencia de radio A-B. Uniremos el punto 1 con el punto B, la prolongación de esta recta, interceptará a la circunferencia anterior en el punto C, siendo 1-C el lado del estrellado, o diagonal del pentágono buscado. Por triangulación obtendremos los vértices restantes, que uniremos convenientemente, obteniendo así el pentágono buscado. Pentágono dado el lado del estrellado (construcción exacta) Operaremos como en el caso anterior, obteniendo en la media razón del lado del estrellado, el lado del convexo. Como en el caso anterior, trazaremos la perpendicular en el extremo A del lado, con centro en A, trazaremos un arco de radio A-1, que determinará el punto B, sobre dicha perpendicular, y trazaremos la mediatriz del segmento A-B, que nos determinará punto medio C. A continuación, con centro en C trazaremos una circunferencia de radio A-C. Uniendo el punto 1 con el punto C, esta recta determinará sobre la circunferencia anterior el punto 5, siendo el segmento 1-5, el lado del convexo del pentágono buscado. Completaremos el trazado por triangulación, obteniendo así los vértices restantes, y uniéndolos convenientemente. Heptágono dado el lado del convexo (construcción aproximada Siendo el segmento...