Elementos notables de los triángulos

Mediatrices y circuncentro Si trazamos las mediatrices de los tres lados de un triángulo, estas se cortarán en un mismo punto, que se denomina Circuncentro(Oc), y que resulta ser el centro de la circunferencia circunscrita al triángulo. Bisectrices, incentro y exicentro Si trazamos las bisectrices de los tres ángulos internos de un triángulo, estas se cortarán en un mismo punto, que se denomina Incentro(Oi), y que resulta ser el centro de la circunferencia inscrita al triángulo. Si trazamos las bisectrices de los ángulos formados por un lado y la prolongación de los otros dos, ambas bisectrices se cortan en un punto, por el que también pasa la bisectriz del ángulo interno, opuesto al lado elegido, dicho punto se denomina Exicentro(Oe), y que resulta ser el centro de una circunferencia tangente exterior al triángulo. Según la pareja de lados del triángulo que se prolonguen, podremos obtener hasta tres Exicentros. Alturas, ortocentro y triángulo órtico Las alturas de un triángulo, son las perpendiculares trazadas desde cada vértice al lado opuesto, o su prolongación. Las tres alturas de un triángulo se cortan en un mismo punto, que se denomina Ortocentro(Oo). El triángulo resultante de unir las tres bases de las alturas (Ha,Hb,Hc), se denomina triángulo órtico, y el Ortocentro resulta ser el incentro de dicho triángulo órtico. Si por cada uno de los vértices de un triángulo, trazamos rectas paralelas al lado opuesto, dichas rectas determinan un triángulo, que se denomina triángulo circunscrito del dado, siendo ambos triángulos semejantes, y como vemos en la figura, el Ortocentro del triángulo dado es el centro de la circunferencia circunscrita del triángulo circunscrito. Medianas y...

Definición, nomenclatura, clasificación y propiedades de los triángulos

Definición El triángulo es el polígono de menor número de lados, y a pesar de ello es el más importante, tanto por la gran cantidad de construcciones que se pueden plantear, como por tratarse de la figura que servirá de base para la construcción de otras más complejas, tanto planas como espaciales. Se define como la porción de plano delimitada por tres rectas que se cortan dos a dos, o como la porción común de tres semiplanos pertenecientes a un mismo plano.                   Nomenclatura En la figura siguiente se puede apreciar la nomenclatura a utilizar, para designar los diferentes elementos de un triángulo. Los vértices se designarán mediante letras mayúsculas, y los ángulos correspondientes, mediante la misma letra mayúscula, pero con acento circunflejo, o un pequeño ángulo sobre la letra. Los lados se designarán mediante la misma letra del vértice opuesto, pero en minúscula. El orden de las letras será el inverso a las agujas del reloj, y cuando se trate de triángulos rectángulos, la hipotenusa se designará con la letra “a”. Clasificación Los triángulos se clasifican en función de la longitud de sus lados, o del valor de sus tres ángulos internos. Teniendo en cuenta la longitud de sus lados, los triángulos se denominan: Equiláteros si tienen sus tres lados iguales, Isósceles si tienen dos lados iguales y uno desigual, y Escalenos si tienen los tres lados desiguales. Teniendo en cuenta el valor de sus tres ángulos internos, los triángulos se denominan: Acutángulos si tienen sus tres ángulos agudos, Rectángulos si tienen un ángulo recto, y Obtusángulos si tienen un...